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power, ft-1b/sec
free-stream dynamic pressure, psf

propeller blade station, ft

propeller blade radius, ft, and resultant force, 1b

rotating cylinder flap
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aft flap deflection, deg
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downwash angle, deg
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LARGE~SCALE WIND-TUNNEL TESTS OF AN AIRPLANE MODEL WITH
FOUR PROPELLERS AND ROTATING CYLINDER FLAPS
By James A. Weiberg and Stanley O. Dickinson

Ames Research Center

SUMMARY

Wind-tunnel tests were made of a model equipped with rotating cylinder
flaps and four propellers. Comparison with the results obtained with the
same flap on a model with two propellers of larger diameter but with approx-
imately the same slipstream coverage on the wing showed that large gains were
obtained in the lift due to thrust and slipstream turning as a result of the
increased flap chord relative to propeller diameter. The slipstream turning
angles for the four-propeller model were approximately equal to the flap
deflection.

INTRODUCTION

The small-scale and two-dimensional tests of reference 2 indicated that
a rotating cylinder built into the leading edge of a flap could provide large
gains in flap 1lift with low rotating cylinder power, low longitudinal trim
requirements, and low flap hinge moments. Based on these data, tests were
made of a large-scale, three-dimensional, two-propellered model with a rotat-
ing cylinder flap (RCF). The results are presented in reference 3. Addi-
tional tests were made of the rotating cylinder flap on a model having four
propellers of smaller diameter but providing approximately the same slip-
stream coverage on the wing.! For this model with reduced propeller diameter
the ratio of flap chord to propeller diameter was greater than for the model
of reference 3 and hence would provide greater slipstream turning as indicated
in reference 4. The tests were made in the Ames 40- by 80-Foot Wind Tunnel.
The investigation included an examination of the effects of cylinder speed,
propeller thrust, nacelle spacing, wing leading-edge slats, wing and nacelle
tilt, fuselage strakes, and horizontal-tail location on flap effectiveness,
stall characteristics, longitudinal stability, slipstream turning, and descent
characteristics.

MODEL

The model for these tests shown in figure 1 incorporated the rotating
cylinder flap described in reference 3. The geometry and dimensions of the
model are given in figure 2. As shown in this figure, two nacelle locations

lprofessor A. Alvarez-Calderon was a consultant for the design of the
rotating cylinder flap used on both the two and the four-propellered models.




were tested on the model. The wing could be tilted 20° leading edge up and
the nacelles could be tilted 15° nose down. The pivot axes are shown in

figure 2.

Details of the flap are shown in figures 1(c¢) and 2(b). A 10.9-inch-
diameter machined aluminum cylinder (0.25-inch wall) was built into the lead-
ing edge of the flap. The cylinder was in four segments, each 65.1 inches
long and driven by an electric motor. Each segment had 18,2-inch-diameter
disks on the ends at the wing tips and fuselage. The cylinder segments were
separated 0.25 inch and fitted with 13.4-inch-diameter disks at mid-semispan.
The flap included a slotted aft portion with a chord that was 28 percent of

the wing chord.

The horizontal tail could be located in two positions representing a low
and a tee tail. These positions are shown in figure 2(a).

Details of the wing leading-edge slat, end plates, nacelle fairings, and
fuselage strakes are shown in figure 2.

The model had 4 three-bladed propellers of 4.77-foot diameter driven by
electric motors. The geometry of the propeller blades is shown in figure 3(a).
The blade angle at 0.75 blade radius was 21.5°.

TESTS AND CORRECTIONS

Tests were made at free-stream dynamic pressures from 0 to 2.6 psf
(Reynolds number = 1.5 million}. The data from these tests include the direct
propeller forces as well as the aerodynamic forces. The propeller character-
istics are given in figures 3(b) and 3(c). Forces and moments are presented
about the wind axes for a moment center located as shown in figure 2(b).

Tunnel-wall corrections were not applied to the data because the
relative size of the model and the wind tunnel was within the boundaries indi-
cated in reference 5 for best correlation between wind-tunnel and flight-test
results. The conventional tunnel-wall corrections are:

a =ay + 0.3 Cp
Cp = Cp, * 0.0052 CL,?

where the subscript u stands for uncorrected data.

No corrections were made for effects of the model supports as these
effects were estimated to be small (CDtare = 0.027).

Cylinder rotational power input was determined from measurements of
electrical power input to the drive motors and corrected for motor efficiency
obtained from a dynamometer calibration of the motors.
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Flap hinge moments were obtained from measurements with strain gages on
the flap actuator arms.

RESULTS AND DISCUSSION
The data are presented in figures 4 to 27 as listed in table 1.

Flap Effectiveness

The effect of cylinder rotation on 1lift is shown in figure 4. Cylinder
speed is expressed as a ratio of cylinder surface speed to free-stream veloc-
ity U/V. At low values of U/V, 1lift increases rapidly with increasing U/V.
until the flow on the flap is attached, corresponding to the knees of the
curves in figure 4. The ratio U/V for attached flow for a given flap
deflection was the same as for the two-propellered model of reference 3. The
ratio U/V for attached flow was dependent only on flap deflection and was
independent of angle of attack, propeller slipstream effects, wing tilt,
nacelle tilt, and nacelle spacing.

For the remainder of the figures wherein U/V is constant, the value of
U/V  given on the figures and in table 1 is at or above the value for
attached flow. The power required to rotate the cylinder is shown in figure
5(a) and is the same as for the two-propeller model of reference 3. Figures
5(b) and 5(c) show the relationship between cylinder speed, airspeed, and U/V.

Lift and drag due to flap deflection and thrust are shown in figure 6.
The data in this figure are for a value of U/V at or above that required for
attached flow on the flap. At zero thrust, the 1ift due to flap deflection
shows reasonable agreement with the flap theory of reference 1 for flap deflec-
tions up to 70°. The apparent deterioration of flap effectiveness above 70°
may be due to wing-fuselage juncture effects since tufts showed attached flow
on the flap except near the fuselage, and the presence of large external
vortices on the fuselage and nacelles.

The 1ift due to thrust for 60° flap deflection is compared in figure 7
with the two-propeller data from reference 3. The 1lift due to thrust was
greater for the model with the four propellers because of the greater turning
of the slipstream for the larger ratio of flap chord to propeller diameter.
Included in figure 7 are estimated values from reference 4 and comparisons
with a blowing BLC flap from reference 6. For the same flap chord to pro-
peller diameter ratio, the 1ift due to thrust is the same for the RCF and the
blowing BLC flap and is estimated reasonably well by the theory of reference 4.

The ability of the aft flap to provide 1ift control is shown in figure 8
for a 60° main flap deflection. An aft flap deflection of 20° provides a cap-
ability of about 0.13 g normal acceleration. Above 20° deflection, the effec-
tiveness decreased. At high thrust coefficients, the aft flap is more
effective for drag control than 1lift control.



Stall Characteristics

Observations of the flow about the wing, flaps, and fuselage with_ tufts
and streamers indicated that maximum lift appeared to be limited by fuselage
flow deterioration rather than flap or wing stall. Various attempts were made
to contain or delay this flow interference to higher angles of attack by the
use of slats, reduced nacelle spacing, wing tilt, and fuselage strakes.

To increase the propeller slipstream coverage near the fuselage, the
nacelles were moved inboard (nacelle spacing B, fig. 2(a)). The effect of the
reduced nacelle spacing with 70° flap deflection is shown in figure 9. The
comparison shown in this figure also includes the effect of propeller rotation;
however, figure 13(a) shows that, at least for 80° flap deflection, this
effect would be small. Figure 9 thus indicated that, at a thrust coefficient
of 4, the closer nacelle spacing improved the flow over the wing and flap near
the fuselage and increased maximum 1lift.

The effect of full-span, wing leading-edge slats is shown in figure 10.
With 60° flap deflection, the slats increased maximum lift at thrust coeffi-
cients of 2 or less. With a higher thrust coefficient or higher flap deflec-
tion the full-span slat was detrimental. It is not known if the slat would
be more effective if tailored to the higher thrust coefficients. Also, tested
were partial span slats between the inboard nacelles and the fuselage on the
model with the reduced nacelle spacing (nacelle spacing B, fig. 2(a)) and
flaps 70°. This slat configuration did not improve 1lift or stall character-
istics (fig. 10(c)}).

The effect of wing tilt is shown in figure 11. The data in this figure
show that the wing attitude relative to the fuselage did not appear to affect
the wing maximum 1ift capability with flaps deflected.

An attempt was made to improve the flow around the large angular fuselage
by large strakes on the forward lower part of the fuselage (fig. 2(a)). These
strakes improved the fuselage flow and increased maximum lift as shown in
figure 12.

The effect of direction of propeller rotation on stall characteristics
was also investigated. Two modes of rotation were tested: all like rotation,
and with all inboard blades down going. The results are shown in figure 13.
The counterrotating arrangement with down-going blades next to the fuselage
reduced flow separation in that region but did not affect the longitudinal
force characteristics. The counterrotating propeller arrangement, however,
greatly reduced the side-force variation with angle of attack (fig. 13(b))
similar to the results shown in reference 7.

Longitudinal Stability and Control

The effect of horizontal-tail location on stability is shown in figure 14
for a flap deflection of 80°. Large variations in the tail-on stability

3Cy/0Cy, are caused by changes in the downwash parameter de/3a with T.'
(similar to the results shown in ref. 6).
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The model with the low tail shows larger variations of 3C_/3C; with
T.' and becomes unstable at high T.' (moment center at 0.35 CT. The magni-
tude of the tail pitching-moment contribution was approximately the same for
both tail positions. For flap deflections of 60° or less at low angles of
attack (figs. 17 and 18), the model with the low tail was unstable, even with
power off (T.' = 0). The results of reference 8 indicate that this may be the
result of the wing-fuselage wake impinging on the tail. The tee tail provided
a positive contribution to stability (fig. 14(b)). '

Zero Airspeed Characteristics

A measure of the effectiveness of a flap is its ability to convert thrust
into 1lift by deflection of the slipstream. The slipstream turning effective-
ness at zero forward speed is shown in figure 15. Included in this figure are
estimated values from reference 4, comparisons with the two-propeller RCF
data of reference 3, and data for a four-propeller blowing BLC flap from
reference 6. The RCF on the four-propeller model with a larger flap chord
relative to the propeller diameter provided greater slipstream turning for a
given flap deflection than either the RCF on the two-propeller model or the
blowing BLC flap. The data in figure 15 are plotted with flap deflection
referenced to thrust axis and show that slipstream turning at zero airspeed is
a function of the flap deflection relative to the thrust axis. On the four-
propeller RCF model, 74° slipstream turning at 87-percent thrust recovery was
obtained with 70° flap deflection (aft flap deflected 20°).

The rotating cylinder flap model provided a given slipstream turning with
less pitching moments than the blowing BLC flap. With the four-propeller RCF
model, these moments were zero for a moment center located at 0.35 c.

The data in figure 15 indicate that the model with 80° flap deflection
can hover with approximately 20° angle of attack or wing tilt. At forward
flight for the model with the wing tilted, minimum drag occurs at a large neg-
ative fuselage angle of attack (fig. 23(b)). Less negative fuselage angle of
attack is required with negative flap deflection.

Descent Characteristics

The effects of flaps, slats, and wing and thrust tilt on the descent
characteristics are shown in figure 16. In this figure, the descent angle
and descent velocity Vg at Cp.. . are shown as functions of flap deflection

for an assumed wing loading W/S of 40 psf. Figure 16 shows that the descent
angle at Crp,, increased with both main flap and aft flap deflection.

Additional gains in descent capability can be obtained if the inboard and
outboard propellers are operated at different thrust settings to vary the span-
wise distribution of 1lift and drag as shown in reference 8. The spanwise dis-
tribution of thrust was varied by operating the propellers at different rota-
tional speeds with the blade angle held constant. The effect of differential



propeller thrust on the descent angles and descent velocity at chax is

shown in figure 16(c). The differential propeller thrust, for approximately
the same average total thrust, resulted in a loss in 1lift (fig. 27). Drag at
maximum 1lift, however, was increased giving an increase in descent angle of
about 4° (fig. 16(c)). Descent angles of over 20° were obtained at maximum
lift.

CONCLUDING REMARKS

The results have shown that the rotating cylinder flap can provide the
large values of slipstream turning and 1lift due to thrust indicated by the
large flap chord relative to propeller diameter. Hover could be achieved with
moderate amounts of angle of attack or wing incidence. At forward velocities,
the drag due to wing incidence could be reduced by small amounts of negative
flap deflection. Fuselage flow deterioration appeared to limit maximum 1lift
and could reduce the effectiveness of the horizontal tail for some vertical
locations. The effects of this flow deterioration could be reduced by
fuselage strakes and by the spacing between the propellers and fuselage.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif. 94035, Dec. 10, 1969
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TABLE 1.- FIGURE INDEX

. u . ' Propeller
Figure Data 8¢ Sa (Vzuml Tail Slats | T.' |8, | 6p rotation
4 CL vs. U/V
5 Power required
6 ACL vs. 8¢
7 ACy, vs. T¢!
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Effect of:
9 Nacelle spacing
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11 Wing tilt
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13 Propeller rotation
14 Horizontal tail
15 Slipstream turning
16 Descent characteristics
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17 (a) Cp, @, Cp vs. Cy, 40 0 5 low, off off 0-4 0 (Y Y ar e
17 (b) 40 10 6.6 off off 0-4 | 0 ©
17(c) 40 10 6.6 off on 0-4]1 0| O
18(a) 60 0 6.6 off off 0-6 | 0 O
18(b) 60 0 6.6 off on 0-4} 0] O
18(c) 60 0 6.6 low off 0-4 0 0
18(d) 60 0 6.6 low on 0-4 0 0
18(e) 60 20 6.6 off off 0-6 { 0 O
18(f) 60 30 6.6 off on, off| 0-4 0] 0
18(g) 60 30 6.6 low off 0-4! 0| O
19(a) 70 0 6.6 off off 0-6 { 0] © y
19(b) 70 0 6.6 tee off 0-4 1 0 0 [~/
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25 55 20 6.6 off of f 0-6 {20 |-15
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®Differential thrust T.' = 8 inboard, O outboard and

T.! 4 inboard, 0 outboard
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(a) The model with wing tilted and flaps 0°.

Figure 1.- The model installed in the Ames 40- by 80-Foot Wind
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(b) Front detail of wing and cylinder.

Figure 1.- Continued.

A-39265, 1



11

(c) Rear detail of cylinder and flap.

Figure 1.- Concluded.
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Figure 2.- Geometry of the model.

Dimensions in feet

General dimensions.
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. b \ .{7c-.
" WL 2.85 ft > @ .02¢
Sta, ft WL, ft 3¢
14.35 2.54 Nacelle pivot \(/
14.29 2.20 Wing pivot . A
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Aft flap hinge
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.32{\ 85e
Slotﬁ/“
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“ Aft flap
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(b) Flap, slat, and end-plate geometry.

Figure 2.- Concluded. 13



14

Blade width, in,

n
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Blade thickness / blode width
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Diameter 4,77 ft

Blade activity factor (I8

Disk area /propeller 17.87 sq ft
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m
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Blade thickness / width =
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Fraction of blade radius, r/R
(a) Blade geometry.

Figure 3.- Propeller characteristics.
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15



(EENEUREEENERNE DERE]

IENEENREEERNREE NN

B=21.5°
Data for 4 propellers

Ct

Cp

h N

Te'

|.2

1.0

t
(C) CT’ Cp’ TC

Figure 3.- Concluded.

16



L1

Sf, SA, Té a, Tail

deg deg deg
040 O 42 0O Off
o770 0 43 0O Off
¢80 0 O O Low
80 0O 40 O Low

T TTTTT 7T

NN 1
=

1]
1]
T 17
T

T

TR

<|lc o

(a) Nacelle spacing A
By =87 =0

va SA' Té a, Sw, 8T’ Tail
deg deg deg deg deg
A25 10 4l -24 20 -I5 Off
nN55 20 21 -24 20 -I5 Off
070 20 40 O O O Tee
n70 20 45 0 O O Off
7,5 amm m
2 4 6 8
U
v

(b) Nacelle spacing B

Figure 4.- Effect of cylinder rotation on lift.
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